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1. Introduction

Today saving the existing facilities and infrastructures is the

main task of many organizations responsible for maintenance

and repair issues. We should be aware of aging and performance

of infrastructures under the environmental impacts.

Durability management, environmental impact assessment,

and performance based design of structures are important and

of main concern nowadays. Regarding concrete structures

development of modeling and simulation methods for

different types of concrete deteriorations is a crucial need for

concrete durability evaluation.

Concrete deteriorates in different kinds of exposures. There

are many concrete structures suffering from corrosion and

other types of deterioration. Concrete corrosion is a

widespread and epidemic problem in the world [1-3]. 

Considering economical conditions and limitations of

budgeting concrete durability extension and service life

prediction are necessary from maintenance and repair

management points of view.

The main reasons for concrete corrosion are chloride ingress

and/or carbon dioxide gas diffusion in concrete. Modeling and

simulation of chloride ion ingress and carbon dioxide gas

diffusion in porous media of concrete are needed for better

decision making for maintenance and repair activities.

Diffusion is the process by which matter is transported from

one part of a system to another as a result of random molecular

motions. Transport of ions or molecules has been a subject of

great concern in material sciences. Diffusive agents are

subject to random and complex movement [4]. Considering

spatial variability of governing parameters of reinforcement

corrosion can lead to substantial decrease in predicted service

life of RC structures [5]. Understanding their movement or

transport is of fundamental and practical importance to all

materials especially heterogeneous material like concrete.

Concrete is an alkaline material and includes randomness

from various phases such as aggregate dispersed in hardened

cement paste. Alkalinity lets researchers to apply diffusion

theory to deleterious material ingress in concrete [6]. This

phenomenon is inherently stochastic. It means that the next

step of diffusive agent movement is not dependent to the

history of its previous movements or trajectory. Another

characteristic of concrete material which leads researcher to
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consider randomness or stochastic concepts is that the concrete

media is a random field media [7]. The next step of movement

may be the position of an aggregate or hardened cement paste.

Therefore this concept has direct impact on the diffusive

agent's trajectory [8]. 

There are some simulation methods considering the modeled

heterogeneous media but these methods are too complicated to

be used in practical evaluations. To simplify the preliminary

studies it is possible to think about concrete as a homogen

material but the diffusion of deleterious materials in it is

stochastic. This assumption leads us to model diffusion

problems by stochastic methods [9]. 

There are different approaches for diffusion modeling:

deterministic and stochastic. Deterministic methods are widely

used to simulate diffusion of diffusive agents in concrete.

Recently, stochastic methods have been under attention to

estimate the depth and rate of diffusive agents. Deterministic

models were attractive some years ago but there have been

remarkable interests in stochastic or probabilistic methods

nowadays [3]. The stochastic methods are divided to two

different categories. The most popular method is using a

deterministic model with probabilistic parameters as inputs.

The logical deduction of this method is that the output is also

probabilistic [9, 10]. The main reason that this method has

been used widely is its simplicity and straightforward

framework. From practical engineering point of view this

method is almost accurate but to enhance our understanding

and knowledge about the real behavior of concrete material in

diffusion problems we need more realistic methods. Accurate

simulation of diffusion in concrete is essential for durability

evaluation of existing and durability design of new structures.

Thus stochastic methods are basically becoming attractive as

the second method of solving the problem.

A stochastic differential equation is a differential equation

whose coefficients are random numbers or random functions

of the independent variable (or variables); therefore, it is an

appropriate tool for describing systems with external noise.

Stochastic partial differential equations form a computational

platform by consistent quantitative way of relating uncertainty

in input to uncertainty in output. Many physical, chemical or

even financial problems cannot be described realistically

without modeling some input data statistically. Uncertainty in

input is then quantified, and it is natural to see how this

uncertainty propagates through the model [11].

Numerical solution of stochastic equations is orders of

magnitude more time consuming than the solution of the

corresponding deterministic differential equations [12].

Contrary to this somewhat problematic disadvantage the

information can be extracted from a stochastic analysis is

much more comprehensive and valuable than deterministic

analysis findings. For more accurate uncertainty estimates

involving probabilities, for example for decision reliability

calculations, the complete distribution must be computed.

In the field of diffusion problems, material properties show

some sources of uncertainty those are often represented as

stochastic variables or fields [12].

All properties of concrete in meso-structure level show some

randomness in nature. Thus stochastic differential equations

can be used for material diffusion with random media

especially for concrete. One important and famous example of

a stochastic differential equation which can be used for

diffusion problems is the Langevin equation [13]. This

equation is used in this paper to model/calibrate the chloride

ion profile in concrete. 

2 Diffusion partial differential equation

In many research works Fick’s 2nd law is used to model the

diffusion in concrete [14]. Most of the researchers use the

following partial differential equation which shows the

diffusion process:

(1)

where,

C = chloride ion concentration,

x = depth,

t = time, and

D = diffusion coefficient.

By applying boundary and initial conditions for semi-infinite

concrete and assuming constant D the solution of Eq. 1 is:

(2)

where,

Cs = Chloride ion concentration at surface (C(0,t)).
Typical solutions of Eq. 2 are depicted for various times in

Fig 1. Solution for a specified time shows that the chloride

concentration is deterministic but real measurements show that

it is not true. For a given time this concentration is obviously

statistical. It can be shown by some statistical distribution

mainly normal distribution for any given time. Therefore

stochastic representation of chloride concentration becomes

necessary. This fact, at a glance, is considered in this paper in

modeling approach. It is recommendable to write the diffusion

partial differential equation basically in stochastic form.

The scope of this paper is to model the chloride diffusion in

concrete considering the above mentioned fact. We can

consider the problem as finding the chloride concentration in

concrete which moves or diffuses in concrete stochastically. 

In concrete corrosion study when the chloride threshold

concentration reaches to the reinforcing steel bars corrosion

begins. Instantly after the corrosion initiation it will be the turn

of corrosion propagation which leads to more rust and

extension of this detrimental effect on reinforced concrete.
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Fig. 1. Typical solution of the Eq. 2 at different times



3. Stochastic theory concepts

In this paper we are going to use stochastic partial differential

equation of diffusion process. To do so it is required to define

the stochastic variables. A “random number” or “stochastic

variable” is an object X defined by:

• A set of possible values, called “range”, “set of states”,

“sample space” or “phase space”;

• A probability distribution over this set. 

A stochastic process is simply a function of two variables one

of which is the time t and the other a stochastic X as defined

above [12].

From stochastic theories point of view diffusive agent

movement should be modeled under uncertainty. Here we need

some introductory explanations regarding the problem under

investigation.

The Markov process, also called the Markov chain, is defined

as a stochastic process that the future development of the

process only depends on the present value, not on the past ones

[10, 12 & 15]. In other words,

P(xn,tn|x1,t1,...,xn-1,tn-1)=P(xn,tn|xn-1,tn-1)                             (3)

where P(xn,tn|x1,t1,...,xn-1,tn-1) is the transition probability of

a diffusive agent to be in position xn at time tn given all

previous positions [x1,x1,...,xn-1] at previous time [t1,t1,...,tn-1],

and P(xn,tn|xn-1,tn-1) represents the transition probability

conditioned only on the diffusive agent.

Markov process has the property that given the present state,

the past states have no influence on the future. The advantage

of the Markov process lies in both its broad applications to

engineering systems and its simplicity. Herein, diffusive agent

movement in concrete porous media is assumed to follow the

Markov chain.

A standard Brownian motion or a standard Wiener process

governs the behavior of the random variable W(t) in

continuous time interval 0 ≤ t ≤ T. The standard Brownian

motion satisfies the following conditions [11, 16]:

1.  W(0)=0 with probability 1.

2. If 0 < s < t < T, then the random variable ΔW = W(t) – W(s)

is normally distributed with a zero mean and a variance (t-s),

and satisfies 

3. If 0 < s < t < u < v < T , ΔW1 = W(t) – W(s)  and 

ΔW2 = W(v) – W(u)  , then ΔW1 and ΔW2 are independent.

4. Stochastic diffusion processes

Diffusion processes (specially, Brownian motion) originated

in physics as mathematical models of the motions of

individual molecules undergoing random collisions with other

molecules in a gas or liquid. Long before the mathematical

foundations of the subject were laid, Albert Einstein realized

that the microscopic random motion of molecules was

ultimately responsible for the macroscopic physical

phenomenon of diffusion, and made the connection between

the volatility parameter of the random process and the

diffusion constant in the partial differential equation governing

diffusion.

The connection between the differential equations of diffusion

and the random process of Brownian motion has been a

recurring theme in mathematical research ever since [8].

Einstein realized that the quantity involving Brownian

motion that can be best observed under a microscope in an

experiment is the "diffusivity":

(4)

Where X(t) denotes the observed displacement of the

Brownian particle along a fixed direction at time t. In practice,

t is simply taken as some satisfactorily long time of

observation, and there is no need for fine temporal resolution

as there would be if the velocity were to be measured. Einstein

employed a random walk model for his analysis and showed

that the diffusivity defined in Eq. 4 is identical to the diffusion

constant that describes the macroscopic evolution of the

concentration density n(x,t) of a large number of Brownian

particles:

(5)

where D is diffusion coefficient [13].

If we allow for some randomness in some of the coefficients

of a differential equation we often obtain a more realistic

mathematical model of the situation. All kinds of dynamics

with stochastic influence in nature or man-made complex

systems can be modeled by SPDEs.

A stochastic differential equation (SDE) is a differential

equation in which one or more of the terms are a stochastic

process, thus resulting in a solution which is itself a stochastic

process. In other words a stochastic differential equation is a

differential equation whose coefficients are random numbers

or random functions of the independent variable (or variables).

Hence stochastic differential equations are the appropriate tool

for describing systems with external noise [12].

In its simplest form, diffusion is the transport of a material or

chemical by molecular motion. Individual particles or

molecules will follow paths sometimes known as "random

walks." In such processes, a chemical initially concentrated in

one area will disperse. That is, there will be a net transport of

that chemical from regions of high concentration to regions of

low concentration [4].

The diffusion Eq. 1 has multiple historical origins each

building upon a unique physical or chemical interpretation.

This partial differential equation (PDE) also encompasses

many ideas about probability and stochasticity and its 

solution will require that we delve into some challenging

mathematics.

The above definition of stochastic process allows us to talk

about the statistics of random chloride profile in concrete in N

dimensions. By random, we mean the movement at one

moment in time cannot be correlated movement at any other

moment in time, or in other words, there is no

deterministic/predictive power over the exact motion of

chloride concentration. Already this means we must abandon

Newtonian mechanics and the notion of inertia, in favor of a

system that directly responds to fluctuations in the surrounding

environment.

The classical diffusion Eq. 1 governs the scaling limit of a

random walk where diffusive agent jumps have zero mean and

finite variance. The probability density c(x, t) of the Brownian
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motion scaling limit W(t) solves the diffusion equation, and

represents the relative concentration of a cloud of chloride

concentration in concrete.

In this paper we concentrate on stochastic partial differential

equation (SPDE) of diffusion. Stochastic partial differential

equation of diffusion for chloride concentration trajectory has

been introduced based on the above definitions and

explanations, thus making a further step to build a practical

stochastic model for diffusion problems.

One example of a stochastic differential equation is the

Langevin equation. A stochastic theory based on chloride

concentration movement or simply diffusion model can be

derived from the Langevin equation by considering some

changes to the concepts of its variables. This model as opposed

to deterministic methods can provide more comprehensive

information such as mean, variance and other statistical

characteristics of chloride concentration profile in concrete. 

Langevin equation was the first example of the stochastic

differential equation with a random term X. Each solution of

Langevin equation represents a different random trajectory

and, using only rather simple properties of X (his fluctuating

force), measurable results can be derived [17]. 

Compared to the deterministic diffusion equation, this

modeling scheme has the advantage of capturing any

randomly selected scenarios of chloride concentration in

concrete. The trajectory of a chloride concentration is

stochastic because of the probabilistic nature of its movement

in diffusion problem.

Mathematical Brownian motion is often referred to as the

Wiener process [18-20]. This idealized Brownian motion has

independent increments (no inertia). Physical Brownian

motion, of course, has some small inertia as well as several

other complicating influences from the fluid environment and

from the presence of other nearby Brownian particles [21].

These extra features can be built into a dynamical description

using the mathematical Brownian motion as the basic noise

input with influence mediated by the other physical

parameters. The mathematical Brownian motion has a similar

role in modeling noise input in a wide variety of stochastic

models in physics, biology, finance, and other fields. More

precisely, the Levy-Khinchine theorem indicates that in any

system affected by noise in a continuous way such that the

noise on disjoint intervals is independent can be modeled in

terms of mathematical Brownian motion [22].

Based on the above introduction a typical stochastic partial

differential equation is of the following form:

Xt=m(Xt,t)dt+s(Xt,t)dWt (6)

where Wt denotes a Wiener process (Standard Brownian

motion).

Eq. 6 characterizes the behavior of the continuous time

stochastic process Xt as the sum of an ordinary Lebesgue

integral and an Itō integral. A heuristic (but very helpful)

interpretation of the stochastic differential equation is that in a

small time interval of length δ the stochastic process Xt
changes its value by an amount that is normally distributed

with expectation μ(Xt, t)δ and variance σ(Xt, t)²δ and is

independent of the past behavior of the process. This is so

because the increments of a Wiener process are independent

and normally distributed. The function μ is referred to as the

drift coefficient, while σ is called the diffusion coefficient. The

stochastic process Xt is called a diffusion process, and is

usually a Markov process [9, 11]. 

5. Langevin equation and its solution

Particles moving in a liquid without forces acting on the

particles, other than forces due to random collisions with

liquid molecules, are governed by the Langevin equation [17].

Based on the experience and investigation of several test

results it is obvious that the more real solution of the diffusion

partial differential equation cannot be a smooth curve for

concrete. It shows that there is a tendency to statistical or

stochastic form for solution curve. Therefore stochastic method

is an appropriate approach to model the diffusion in concrete.

To fully describe the movement of chloride concentration in

concrete, a stochastic differential equation should consist of a

drift, a diffusion coefficient, and a driving Wiener process. The

best choice is the Langevin equation which shows outcomes of

exponential decay with noise. It is the most fitted function

form for the diffusion of chloride concentration in porous

media of concrete.

The problem of predicting stochastic chloride concentration

profile in concrete is of Langevin type with trajectories

between fixed concentrations at surface of concrete and

relatively deep points in it. This type of problem is studied by

different researchers [23].

Continuum theories of such diffusive systems describe the

concentration field by the Nernst-Planck equation with fixed

boundary concentrations. On the other hand, the underlying

microscopic theory of diffusion describes the motion of the

diffusing particles by Langevin’s equations. This means that

on a microscopic scale there are fluctuations in the

concentrations at the boundaries. The question of the boundary

behavior of the Langevin trajectories, corresponding to fixed

boundary concentrations, arises both in theory and in the

practice of particle simulations of diffusive motion [23].

The solution of Langevin SPDE looks like the curves in Fig.

1 for a given time but it is not smooth. Langevin equation

which is used in this paper is as follows [9, 11]:

dX(t)=-aX(t)dt+sdW(t) (7)

where a is the drift coefficient, while σ is the diffusion

coefficient. X(t) is the trajectory of chloride content in the

concrete medium at time t; the realization X ranges over a

probability space, and W is the Wiener process or the

Brownian motion which is defined above. Now it is easy to

depict the stochastic chloride concentration profile by the

results of Eq. 7.

6. Discussions

The best method of the solution of the Langevin equation is a

numerical solution. In this paper a simple program is written in

MATLAB® to solve this SPDE. The results of the langevin

equation solution are some trajectories. In the solution of the
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Langevin equation two variables play the main role. Changing a
affects the slope of the trajectories and changing σ results in

variance of the trajectories. Based on these capabilities the

above mentioned program can be used in two ways. Firstly by

changing the coefficients one can find many trajectories like

Fig. 2. Secondly, as shown in Fig. 3, if σ is equal to zero the

mean curve for Chloride content can be found. In other words

the solution can be considered both stochastic and deterministic.

Obviously it is brilliant that the stochastic mode of solution is of

more advantages comparing to deterministic mode.

Results of the solution shown in above figures contain useful

information. Fig. 2 shows that the solution is inherently

stochastic. There are many answers to the question. Each

answer is a trajectory of the chloride content in concrete. In

other words each trajectory can be a possible solution. This is

due to this fact that we have basically written the diffusion

SPDE in stochastic form. There is no need to find the

deterministic answer and then conduct sensitivity analysis to

find some statistics. This is an advantage for this type of

modeling method in comparison to the other methods used by

other researchers.

Fig. 2 also shows that we can define any confidence intervals

or percentiles for the chloride content profile. It is a useful tool

for probabilistic or stochastic durability design methods. Here

the confidence interval shows that there is 95% confidence

that the front depth being between 2.5% and 97.5% of the

results at any time. In the written computer program it is

possible to change confidence intervals to any required range

by changing the upper and lower limits. 

Another important finding from Fig. 2 is that after a lot of

runs simulation shows that the mean value curve of the front

depth is almost same as the deterministic smooth curve. This

important fact is needed for future works when the real test

results are going to be used together with the results of

simulations. This is the next step of this research work which

has been already started. In order to check and verify the

capabilities of the proposed modeling method results from

other researchers are used [24, 6, 25, 26 & and 5]. Here some

typical results of the proposed method are shown to compare

with the data in different references [24, 25]. These references

have real test results for different kind of concretes. All

findings show good and practical results for the proposed

modeling method in this paper.

Typically Fig. 4 to Fig. 6 show comparison of the obtained

results in this paper with the results from reference [24]. Fig.

4 shows the results of chloride content from core samples in

wharf-8 structure with sound concrete (uncracked). Here in

order to show how the proposed method can be used only the

results at 2.5 cm inside concrete are considered for calibration

of the simulations. Assuming only at 2.5 cm depth the chloride

content is known the many trajectories are calculated so that

the mean shows the mean point of the simulated curve and the

scatter of the trajectories at 2.5 cm is same as the real test

results. In other words the real test results at this specific depth

313International Journal of Civil Engineering, Vol. 10, No. 4, December 2012

Fig. 3. Typical Mean Trajectory of Chloride Content vs. Concrete
Depth (Deterministic solution mode)

Fig. 2. Typical Trajectories of Chloride Content vs. Concrete Depth
(Stochastic solution mode)

Fig. 5. Histogram and distribution of the simulated stochastic
chloride content at x = 5 cm in Fig. 4

Fig. 4. Comparison of simulated stochastic chloride content profiles
calibrated by test data for wharf-8 structure at only x = 2.5 cm in

reference [24]



are used to calibrate the proposed method for both a and σ
coefficients. It is clear that only by this limited data all the

chloride content data from real test results in different depths

can be shown by the proposed method in this paper. It means

extrapolation is also possible.

Fig. 5 depicts that the output for any given depth (here x = 5

cm) is normally distributed. Fig. 6 shows by increasing

concrete depth standard deviation of the chloride content

profiles at first increases rapidly and then it becomes pretty

constant.

Fig. 7 to Fig. 9 show the simulated results for comparison

with other real test data from reference [24]. Here again

findings are same as the previous example.

Two more verification examples are included in this 

section from another reference [25]. In this reference 

there are many test results for concrete chloride content in

different type of concretes at two different exposures. 

Fig. 10 to Fig. 15 show that the proposed simulation 

method is capable of being used for prediction of 

stochastic chloride ion profile in concrete based on the

available test data.

The coefficients a and σ in Langevin equation show some

physical meanings. Coefficient a shows how fast or slow the

slope of chloride ion profile is descending. It may be regarded

as the strength of chloride ion binding effect of concrete and

its probable high density. In other words concrete 

permeability is very small. This coefficient physically means

like an opposing force or active barrier against 

diffusing chloride ion in concrete.  Also coefficient σ shows

the variance of diffusing chloride ion in concrete which in turn

can be a sign of the degree of concrete homogeneity.  Overall

finding shows that both a and σ may be accepted as two

measures for concrete quality when durability is the main

concern.

It should be noted that since the proposed method is using

limited available real test data simulations can be used for

different kind of concretes. Therefore this hybrid method

based on the theoretical simulations calibrated by real test
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Fig. 6. Standard Deviation of the Chloride Content Profiles vs.
Concrete Depth in Fig. 4

Fig. 7. Comparison of simulated stochastic chloride content profiles
calibrated by test data for wharf-11 structure at only x = 1.5 cm in

reference [24]

Fig. 9. Standard Deviation of the Chloride Content Profiles vs.
Concrete Depth in Fig. 7

Fig. 8. Histogram and distribution of the simulated stochastic
chloride content at x = 5 cm in Fig. 7

Fig. 10. Comparison of simulated stochastic chloride content
profiles calibrated by test data for concrete at the Weka Bay

exposure site in New Zealand after 60 months at only x = 2.25 cm
in reference [25]



data is more practical than merely theoretical methods or

expensive-time consuming experimental works. One of the

most particular attentions due to lack of budgeting in many

countries is to optimize the management of the two main

items in bridge management systems (BMS). These activities

are repair projects and maintenance activities with their

associated data [27].  The limited data associated with 

them is apparently valuable and can extend possible

application of the Langevin equation for concrete

deterioration prediction and enhances the capabilities of

managerial actions.

7. Conclusions

In this paper a new approach is introduced in

calibration/modeling of the diffusion based deterioration of

concrete. Stochastic partial differential equation (SPDE) of

diffusion, specifically Langevin equation is used to simulate

stochastic chloride content profile vs. time. The major findings are:

1. The famous Langevin equation which is a wide used SPDE

in physics and chemistry can be applied in diffusion based

problems of concrete deterioration successfully.

2. The proposed method has the advantage of capturing an

instantaneous chloride content profile in concrete including

not only the mean but also the variance compared to the

deterministic diffusion equation.

3. The ensemble mean of the proposed stochastic model

based on a large number of runs agrees with the solution of

deterministic diffusion equation very well.

4. A stochastic solution provides more detailed information

as opposed to deterministic methods such as mean, variance

and other statistical characteristics of chloride content profile

at any depth in concrete. 

5. Such information regarding the mean and variance of

chloride content profile in concrete is valuable for concrete

durability design/evaluation and service life prediction of

concrete structures as well.

6. Drift and diffusion coefficients of Langevin equation may

be considered as two measures for concrete quality when

durability is the main concern.
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Fig. 11. Histogram and distribution of the simulated stochastic
chloride content at x = 5 cm in Fig. 10

Fig. 13 - Comparison of simulated stochastic chloride content
profiles calibrated by test data for concrete at the Oteranga Bay

exposure site in New Zealand after 60 months at only x = 1.25 cm
in reference [25]

Fig. 12 - Standard Deviation of the Chloride Content Profiles vs.
Concrete Depth in Fig. 10

Fig. 14. Histogram and distribution of the simulated stochastic
chloride content at x = 5 cm in Fig. 13

Fig. 15 - Standard Deviation of the Chloride Content Profiles vs.
Concrete Depth in Fig. 13
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